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Abstract. We present a direct measurement of velocity distributions in two dimensions by using an ab-
sorption imaging technique in a 3D near resonant optical lattice. The results show a clear difference in the
velocity distributions for the different directions. The experimental results are compared with a numerical
3D semi-classical Monte-Carlo simulation. The numerical simulations are in good qualitative agreement
with the experimental results.

PACS. 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

An optical lattice is a periodic optical light shift potential
created by the interference of laser beams in which atoms
can be trapped. Usually one distinguish between two types
of lattices, near-resonance optical lattices (NROL) [1] and
far-off resonance lattices (FOROL). In the latter type, an
atom can only be trapped, whereas the former (the one
considered in this paper) also exhibits an inherent cool-
ing mechanism (Sisyphus cooling). The Sisyphus cooling
mechanism in a NROL has been the subject of extensive
research due to its high cooling efficiency, but also since
an optical lattice is a very pure quantum system suitable
for fundamental studies of atom-light interaction.

Theoretical studies of the atomic motion in NROLs
have been done in 1D and 2D, both analytically and
numerically. The extension to 3D configurations is how-
ever cumbersome. Analytical solutions become unwieldy
and numerical simulations require long computation time,
especially for high angular momentum transitions. Thus
very few detailed studies have been made in 3D. An ex-
ception is the work by Castin and Mølmer [2] who stud-
ied spatial and momentum localization via full quantum
Monte-Carlo wavefunction simulations in the case of op-
tical molasses.

Measurements of temperature have been made on 3D
NROLs by our group [3,4], and by groups at NIST [5] and
in Paris [6]. In all these experiments, and in this work, the
kinetic temperature is derived from measured velocity dis-
tributions along one axis and is defined as a direct measure
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of the kinetic energy through

T =
M〈v2〉

kB
, (1)

where 〈v2〉 is the mean square velocity of the released
atoms, kB is the Boltzmann constant and M is the atomic
mass. A robust result in all studies is that the temperature
scales linearly with the irradiance divided by the detun-
ing, that is linearly with the light shift at the bottom of
the optical potential (U). This is in excellent qualitative
agreement with 1D-theoretical predictions [7].

Nevertheless, in several works (for example [3,5] and
this work) a four laser beam configuration results in a
face centered tetragonal lattice that cannot simply be re-
duced to three 1D cases. Indeed, all spatial directions are
not equivalent (see Sect. 2.1) and the particular geome-
try of the lattice has to be taken into account. In a re-
cent paper by the Grynberg group [8], the dependence
of temperature and spatial diffusion on geometric param-
eters controlling the lattice spatial periods (lattice con-
stants) in different directions was studied. For different
laser beam configurations producing the NROL, the tem-
perature and spatial diffusion coefficient were measured
for tetragonal lattices (see Sect. 2.1) with different aspect
ratios, i.e. as a function of lattice constants. It was shown
that the spatial diffusion coefficient strongly depends on
the direction. The temperature, which was measured in
one direction, was found to be independent of the lat-
tice spacing. The difference between spatial directions lies
not only in the lattice constants, but also in the modu-
lations of the laser-atom interaction parameters (optical
potentials and optical pumping) in such a way that dif-
ferent behaviors of the temperature along different axes is
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possible. In [9] the Sisyphus cooling effect in a 3D tetrag-
onal NROL was studied theoretically. With a simplified
choice of atomic angular momentum, it was shown by a
semi-classical Monte-Carlo calculation that the tempera-
ture along a given coordinate axis is independent of the
lattice constant, but indeed different along different di-
rections. For the same geometry as considered here, the
linear scaling parameter of the temperature differs by a
factor of 1.4. Moreover, a comparison between [3] and [5]
suggests such an anisotropy of the velocity distribution.
In both experiments, the direction of measurement coin-
cided with the direction of gravity, but this direction did
not correspond to the same lattice axis. It turns out that
these works yield a quantitative discrepancy. The derived
temperature was found to be linear with U with propor-
tionality constants of 12 nK/ER and 24 nK/ER (in [3]
and [5] respectively), where ER is the recoil energy1. The
difference in scaling factor called out for a more thorough
investigation, which would rule out any systematic error.

This work aims at a direct comparison between the
kinetic temperatures along different directions in a 3D
NROL. Measurements of velocity distributions along dif-
ferent directions were made for different lattice parameters
(potential depth and detuning) by absorption imaging of
an expanding atomic cloud. The experimental results are
compared with a 3D semi-classical Monte-Carlo simula-
tion performed for the actual atomic angular momentum.

The paper is organized as follows. In Section 2.1 we
describe the experimental set-up. The experimental data
is presented with derived kinetic temperatures in Sec-
tion 2.2. In Section 3, we describe the numerical calcu-
lation and present the result for the kinetic temperatures.
In Section 4 we discuss the results from the experiment
and the simulations. Finally, in Section 5 we draw conclu-
sions on our work.

2 Experiment

2.1 Experimental setup

Initially, a magneto-optical trap (MOT) is loaded with
N ≈ 2 × 106 cesium atoms (133Cs) from a chirped de-
celerated atomic beam in 4 s. This gives a peak number
density of n0 ≈ 5× 1010 cm−3. The MOT operates at the
(Fg = 4 → Fe = 5) transition at 852 nm (the D2 line),
where F is the total angular momentum quantum num-
ber. Due to off-resonant excitation to Fe = 4, a repumper
beam resonant with the (Fg = 3 → Fe = 4) transition is
also used. After turning off the loading, the atoms are fur-
ther cooled in an optical molasses for about 20 ms. From
the optical molasses, an atomic cloud at a temperature of
T = 3 µK is loaded into the optical lattice with a transfer
efficiency of about 50%. The filling factor of the lattice is
around 0.2 %. The optical lattice beams are red detuned
from the (Fg = 4 → Fe = 5) resonance, typically between

1 The recoil energy ER = (�k)2/2M , where k = 2π/λ is the
wave vector, λ is the wavelength of the light, and M is the
atomic mass.

Fig. 1. Beam configuration of the 3D lin ⊥ lin optical lattice.
Two beam pairs in the xz- and yz-planes respectively, orthog-
onally polarized along the y- and x-axes respectively, make an
angle θ = 45◦ with the z-axis.

Fig. 2. Lowest adiabatic optical lightshift potential projected
in the xz-plane in units of the optical wavelength, λ.

∆5 = −10Γ and ∆5 = −40Γ , where Γ/2π = 5.2 MHz is
the natural linewidth. The atoms equilibrate in the lat-
tice for 10 ms and are then released by turning off the
optical lattice beams, with an acousto-optical modulator
(AOM) in less than 1 µs, followed by a measurement of
the kinetic temperature. This short falltime of the AOM
avoids adiabatic release of the atoms in the optical lattice.

The optical lattice is a 3D generalization of the 1D
lin⊥lin configuration created by two orthogonally polar-
ized pairs of laser beams that propagate in the yz- and
xz-planes respectively [1]. The angle between the beams
of each pair is 90◦, and each beam forms an angle of
θ = 45◦ with the (vertical) quantization (z-) axis (see
Fig. 1). This results in a tetragonal structure with alter-
nating sites of pure σ+- and σ−-light, where potential min-
ima are formed. From Figure 1, it is clear that directions
x and y are equivalent but that direction z is different.
It follows that the optical pumping rates and the light
shift modulations are different along z compared to x or
y. In Figure 2 we plot the projection along x and z of
the lowest adiabatic potential, which is where the atoms
spend most of their time [1]. Two main anisotropic prop-
erties arise. First, the lattice constants az = λ/(2

√
2) and

ax,y = λ/
√

2 are different. Second, the shapes of the po-
tentials are also clearly different. In particular, they show
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Fig. 3. Typical 2D density profiles
acquired at two different times τ af-
ter releasing the atoms from the lat-
tice. The left image shows an atomic
cloud after τ = 12.8 ms expansion to-
gether with density profiles in the z-
and x-directions. The right image shows
an atomic cloud after τ = 36.8 ms.

different potential barriers to escape adiabatically from a
potential well (lower along the z-direction than what it
is along the x- and y-directions by a factor of 1.65) and
show different reduced oscillating frequencies (ωiai/λ) at
the bottom of the potential wells.

The velocity distributions along the z- and x-axes are
measured using a well known absorption imaging tech-
nique [10]. After release from the lattice, a short (50 µs)
resonant probe pulse (Fg = 4 → Fe = 5) hits the atomic
cloud. The irradiance of the probe pulse is I � I0,
where I0 = 1.1 mW/cm2 is the saturation irradiance. The
shadow in the probe beam is imaged onto a CCD camera.
By capturing images at different time delays after turning
off the optical lattice beams, we extract the different spa-
tial density distributions from which velocity distributions
can be derived. The velocity distribution in the z-direction
(direction of gravity) was compared to the results obtained
with a “time-of-flight” (TOF) method [11], showing good
agreement.

2.2 Measured kinetic temperatures

The 2D projection (in the xz-plane) of the expanding
cloud is recorded at two different time delays, τ1,2, af-
ter extinction of the optical lattice beams. Typical values
are τ1 = 12 ms and τ2 = 35 ms. Examples of 2D den-
sity profiles are shown in Figure 3 together with Gaus-
sian fits to the spatial density profile along x and z. Ex-
cellent agreement with Gaussian distributions is found.
From the fits, we extract the rms radius, σi, (i = x, z),
of the clouds which increases with time, t, according to
σ2

i (t) = σ2
i (0) + v2

i t2 [12].
The kinetic temperature in different directions is de-

fined as

Ti =
M

kB

σ2
i (τ2) − σ2

i (τ1)
τ2
2 − τ2

1

· (2)

In Figure 4 we plot derived kinetic temperatures along x
and z for three different detunings, as a function of U0,

 

Fig. 4. Tx (filled) and Tz (open) as a function of modula-
tion depth, U0/ER, for three different detunings (∆5 = −10Γ
(squares), −20Γ (triangles), −30Γ (circles)). The solid and
dashed line are linear fits to the data.

which is the modulation depth of the diabatic optical po-
tential. Here, U0 is defined as

U0 =
�|∆5|

2
ln
[
1 +

(
44
45

)
Ω2

2∆2
5

]
, (3)

where Ω2 = (Γ 2/2)/(I/I0) is the square of Rabi frequency
and the irradiance is I = 8Ibeam (Ibeam is the irradiance of
a single beam), at the center of a potential well. For suf-
ficiently high irradiances and temperatures, it is obvious
that the universal scaling with U0 prevails for each direc-
tion. However, this scaling with U0 is clearly different for
different directions. For large U0, the temperature along z
is found to be significantly smaller than the temperature
along x. Linear fits to the data yield

Tx = (0.55 + 0.022(U0/ER)) µK (4)
Tz = (0.62 + 0.012(U0/ER)) µK. (5)
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That is, the ratio between the scaling parameters along x
and z is determined to be 1.8 (0.3). However, at low mod-
ulation depths and low temperatures, the temperatures
are found to be approximately the same along z and x.

3 Numerical simulations

3.1 Theoretical framework

We have performed semi-classical Monte-Carlo simula-
tions in 3D for the actual (Fg = 4 → Fe = 5) transition
of 133Cs. The main features of the method have been dis-
cussed elsewhere [9,13] so here we just recall the main
elements and peculiarities for our multidimensional con-
figuration.

The optical Bloch equations (OBE), which describe the
evolution of a sample of two-level atoms (with Zeeman de-
generacy) coupled to both laser fields and vacuum modes,
are the starting point of the analysis. Because of the
cooling effects and the decoherence due to photon scat-
tering, the atomic cloud dynamics can be reduced to a
semi-classical picture for a large range of lattice parame-
ters [14]. The OBE are therefore converted into a set of
coupled semi-classical Fokker-Planck equations (FPE) via
Wigner transforms. Projecting the FPE onto the position-
dependent adiabatic states base |Φm(r)〉 (see Appendix A)
and neglecting the coherence terms which are unimpor-
tant in a semi-classical description, one gets a new set of
FPE only involving the local populations of the adiabatic
states2.

By physical interpretation of the FPE, it follows that
the atomic cloud dynamics can be reduced to internal
state transitions via optical pumping at a rate γn,m from
|Φn〉 to |Φm〉, and the evolution of each atom in a given in-
ternal |Φm〉-state due to deterministic forces. These forces
are first of all due to the optical potential modulation
(−∇Um) and secondly, due to the radiation pressure
force (F). Moreover, the atomic cloud undergoes momen-
tum diffusion due to photon scattering.

It is then straightforward to show that the FPE solu-
tion is formally equivalent to the integration of a set of
Langevin equations interrupted by internal states quan-
tum jumps, each one accounting for the random trajectory
of a single atom. The quantum jumps are taken into ac-
count by generating a random number r at each time step
which is compared to the transition probability γm,ndt
from |Φm〉 to |Φn〉 (with n �= m) during the time step dt.
In the following, we define rn,m as 1 if a quantum jump oc-
curs from n to m and 0 otherwise. Between two quantum

2 Note that the adiabatic approximation is justified by the
fact that the adiabatic state splittings are generally greater
than the motional couplings in the regime of deep potentials.

jumps, the elementary evolution of the atom is

dR (t) =
P (t)
M

dt (6)

dP (t) = −∇Umdt +
∑
n�=m

rn,m

(
δpn,m + Fn,mdt

)

+

1 −
∑
n�=m

rn,m

 (fm + Fm,m) dt, (7)

where R and P are the atomic position and momentum
respectively. The Hamiltonian force, (−∇Um), is derived
from the adiabatic potential in state |Φm〉, and Fn,m is
the average radiation pressure in case of a quantum jump
from n to m (if m = n, no jump occurs). The momentum
diffusion is determined by random values: the momentum
kick undergone by the atom in case of a quantum jump
from n to m, δpn,m and the recoil mean force in the ab-
sence of a quantum jump, fm. Note that δpn,m and fm
are related to the position-dependent coefficients appear-
ing within the FPE. In a (µ-indexed) space base where the
momentum diffusion matrix {Dn,m} (see Appendix B) is
diagonal, the first two moments of fm and δpn,m read

〈fµ
m〉 = 0 and 〈(fµ

m)2〉 =
2Dµ,µ

m,m (r)
dt

〈δpµ
n,m〉 = 0 and 〈(δpµ

n,m)2〉 =
2Dµ,µ

n,m (r)
γn,m

· (8)

3.2 Numerical results

The numerical simulations are performed for a typical
sample of 300 independent atoms. For the lattice param-
eters considered in this work, the kinetic energy reaches
steady-state in a time of approximately 4000/Γ ′, where
Γ ′ = Γs0/2 is the total scattering rate and s0 is the
saturation parameter (see Appendix A). The averages
of the kinetic energies in steady state in the x-, y- and
z-directions provide the kinetic temperatures in the cor-
responding directions,

Ti =
M〈v2

i 〉
kB

· (9)

The simulations were made for three different detunings
(∆5 = −10Γ,−20Γ,−30Γ ). For each detuning we ac-
quired velocity distributions, in each direction, at six dif-
ferent modulation depths. Note that the chosen modula-
tion depths are much higher than in the experiment since
the semi-classical model breaks down when the momen-
tum distribution becomes too narrow. This is because
deep modulation depths are required to avoid non-adia-
batic motional couplings between adiabatic sublevels that
are not included in our treatment [13]. Moreover, the time
to reach steady state increases for low modulation depths.
However, the linear scaling should still hold. The results of
the numerical simulations are shown in Figure 5. Here, the
kinetic temperature is plotted as a function of modulation
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Fig. 5. Kinetic temperature, along the x- (circles), y-
(squares) and z-direction (filled triangles) as a function of
modulation depth, U0/ER, for three different detunings (∆5 =
−10Γ,−20Γ,−30Γ ). The solid and dashed lines are linear fits
to the data.

Table 1. The scaling parameter ξx,y,z, (in units of nK/ER),
in the equation Tx,y,z = T0 + ξx,y,zU0 for different studies. The
experimental errors of the slope for this work is the quadratic
sum of the statistical error and an estimated maximum sys-
tematical error. The errors in the simulation is the statistical
error from the fit.

Ref. [3] Ref. [5] this work this work

(experimental) (simulations)

ξx – 24(2.4) 22(3.5) 35(1.2)

ξy – – – 35(1.2)

ξz 12(1.2) – 12(2.5) 13(1.0)

depth for the detunings mentioned above. The tempera-
ture scales linearly with the light shift independently of
the detuning according to

Tx ∝ 0.035(U0/ER) µK (10)
Ty ∝ 0.035(U0/ER) µK (11)
Tz ∝ 0.013(U0/ER) µK. (12)

As in the experiments, the results of the simulations show
a clear difference in scaling of the kinetic temperature
along the z-axis compared to the x- and y-axes, here, by
a factor of 2.7.

4 Discussion

The results from the experimental work and the numerical
simulations are compiled in Table 1. A comparison shows a
quantitative excellent agreement between our experiments
and former studies in which the kinetic temperature was
measured along x [5] or along z [3]. The numerical simula-
tions also reproduce the difference in scaling parameter for
different directions was measured in the experiments, and
confirms the appearance of a discrepancy between kinetic
temperatures along x–y and z.

The inherent cooling process in an optical lattice for
atoms with kinetic energy EK > U0 is Sisyphus cool-
ing. This process was explained by Dalibard and Cohen-
Tannoudji in [7] in the case of a theoretical transition
(Jg = 1/2 → Je = 3/2). The Sisyphus cooling cycle occurs
until the atomic kinetic energy is lower than the potential
barrier in a particular direction and thus does not depend
on any other anisotropy (the lattice spacings for example).

However, for higher angular momentum transitions,
the cooling process does not stop because other relaxation
processes than standard Sisyphus cooling could still oc-
cur [13,15]. For example, atoms in bound states within
a lattice well can be excited to unbound states, followed
by decay to lower lying vibrational states. We find that
the atomic kinetic energy is EK ∼ U0/10 and thus that
the atoms are very well localized at the bottom of the
lattice wells in agreement with former experimental inves-
tigations, for instance [5], and full quantum Monte-Carlo
simulations [2]. The difference in the scaling factors is pro-
portional to the difference in the modulation depth of the
lowest adiabatic optical potential in the corresponding di-
rections. Therefore we conclude that it is this difference
which induce anisotropic kinetic temperatures in the op-
tical lattice. This conclusion is not incompatible with the
results of [8] in which the steady-state kinetic temperature
was measured for different lattice constants showing that
the steady-state kinetic temperature was independent of
the lattice spacing, because the geometrical anisotropy in
the lattice do not reduce to a simple scaling factor between
directions x, y and z.

At low modulation depths, the lattice reaches a min-
imum temperature followed by a sharp increase in tem-
perature, usually called décrochage. When laser cooling is
still effective there exists a region where the temperature
is isotropic. However, this region is difficult to analyze for
several reasons. For instance, at low modulation depths
the atomic localization in a trapping site is less strong,
and thus the anharmonicity of the potential well becomes
more important. This could lead to an increased coupling
between the different motional directions and also a broad-
ening of the vibrational levels, i.e. increasing the tunneling
rate in the lattice. Another effect that must be taken into
account at low modulation depths is increased spatial dif-
fusion [8,16]. This means that the loss rate of the atoms
in the lattice becomes larger, and thus the signal-to-noise
in the absorption images decreases. Furthermore, if the
thermal expansion of the atomic cloud in the recorded ab-
sorption images is small compared to the size of the cloud,
due to spatial diffusion, there will be large uncertainties
in the extracted temperatures.

5 Conclusions

We have measured the velocity distributions in a 3D op-
tical lattice of cesium along two non-equivalent directions
as a function of lightshift (U0). In agreement with previ-
ous works, the kinetic temperature scales linearly with U0.
As an original result, we have found that the distributions
are clearly anisotropic (with Tx,y > Tz). The experimental
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results are in good agreement with a 3D numerical Monte-
Carlo simulation and we conclude that it is the modulation
depth of the adiabatic optical potential that determines
the steady-state kinetic temperatures. The anisotropy in
kinetic temperature is not paradoxical. In fact the “ki-
netic temperature” here is defined as a simple measure of
the atomic kinetic energy (see Eq. (1)) and not as a ther-
modynamical temperature. This is because thermalization
in Sisyphus cooling do not result from energy exchange
between particles via collisions, but from atom-photon
interactions. Our result show that no thermodynamical
temperature can be defined for Sisyphus cooled atomic
samples because of the violation of the equipartition the-
orem [17]. Our results can give important clues for a full
understanding of the cooling mechanism in an optical lat-
tice. Furthermore, knowledge about the velocity distribu-
tions in all directions is important in precision experiments
utilizing optical lattices.
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Appendix A: Optical Bloch equations
and adiabatic states

This appendix aims at introducing the adiabatic states for
a general J → J + 1 transition atomic sample. Consider
an atom of dipole operator D̂ = D(d̂+ + d̂−), with d̂±

being the raising and lowering components of D̂, and D
the reduced dipole moment. This atom interacts with the
laser field

EL(r, t) =
E0

2
ε (r) e−iωLt + c.c., (13)

where E0 is the amplitude of the electric field, ωL is the
laser frequency and ε(r) is a vector describing the spatial
varying profile of the laser polarization. The operators Â

and B̂q represent the hermitian conjugates of the opti-
cal pumping cycles (absorption of laser photons followed
by emission of stimulated or spontaneous photons respec-
tively), and are defined as

Â =
[
d̂− · ε∗(r)

]
·
[
d̂+ · ε(r)

]
B̂q =

[
d̂− · ε∗(r)

]
·
[
d̂+ · eq

]
(14)

with q = 0,± or q = x, y, z (15)

where

e± =
∓ex − iey√

2
and e0 = ez (16)

are the circular basis vectors. After elimination of the ex-
cited state in the low saturation regime,

s0 =
Ω2/2

∆2 + Γ 2/4
� 1, (17)

the atomic sample dynamics is governed by the OBE
involving the projection of the density matrix onto the
internal state including an Hamiltonian part:

Ĥ =
p̂2

2M
+ �

∆s0

2
Â (r) (18)

plus a relaxation part. In the semi-classical limit, the
position-dependent adiabatic states are defined as the
eigen-states of the light-shift operator �(∆s0/2)Â:

�
∆s0

2
Â (r) |Φm (r)〉 = Um (r) |Φm (r)〉 · (19)

Note that in general |Φm (r)〉 and Um (r) cannot be calcu-
lated analytically.

Appendix B: Dynamics coefficients
for the Langevin equation

In this appendix, we give the general expressions for the
dynamics coefficients involved in the FPE and Langevin
equations for Sisyphus cooling in the low saturation and
semi-classical regime. The transition rate from state |Φn〉
to state |Φm〉 (for m �= n) is

γn,m = Γ ′
0

∑
q=±,0

|〈Φn|B̂q|Φm〉|2. (20)

The average radiation pressure term in the direction i (i =
x, y, z) is

F i
n,m = −�Γ ′

0 Im

( ∑
q=±,0

〈Φm|∂iB̂
†
q |Φn〉〈Φn|B̂q|Φm〉

)
(21)

and the momentum diffusion matrix is

Di,j
n,m =

�
2Γ ′

0

8
〈Φn|∂2

i,jÂ|Φm〉δn,m

+
�

2k2Γ ′
0

4
δi,j

∑
u∈x,y,z

u�=i,j

〈Φm|B̂†
u|Φn〉〈Φn|B̂u|Φm〉

− �
2Γ ′

0

8

∑
q=±,0

(
〈Φm|∂2

i,jB̂
†
q |Φn〉〈Φn|B̂q|Φm〉

− 〈Φm|∂iB̂
†
q |Φn〉〈Φn|∂jB̂q|Φm〉 + c.c.

)
(22)
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where δα,β is the Kronecker symbol (1 when α = β and 0
else) and i, j denotes the spatial directions (x, y, z). Note
that for the sake of simplicity, the spontaneous emission
pattern is simplified in a way that the photons are re-
stricted to be emitted only along the x-, y- and z-axes.
This approximation is justified because the kinetic energy
is expected to be greater than the recoil energy [18].
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